JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY

Intense Degradation of Myosin Light Chain Isoforms in Spanish **Dry-Cured Ham**

Leticia Mora, Miguel A. Sentandreu, and Fidel Toldrá*

Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain

Supporting Information

ABSTRACT: One of the main biochemical changes that take place during the processing of dry-cured ham is the degradation of the muscle protein fraction, mainly due to the action of muscle enzymes. In the present study, the isolation and tentative identification of 137 fragments from myosin light chain 1 (MLC 1), together with 88 fragments originated from myosin light chain 2 (MLC 2), have been achieved for the first time in Spanish dry-cured ham, proving the intense proteolysis experienced by myofibrillar proteins after dry-cured processing. This study was carried out by use of proteomic technology for peptide identification, and the possible enzymes contributing to the degradation of these proteins were also further discussed.

KEYWORDS: dry-cured ham, myosin light chain, proteolysis, proteomics, mass spectrometry, muscle peptidases

■ INTRODUCTION

Myosin is the major myofibrillar protein in skeletal muscle, making up greater than one-third of the total protein in this tissue. This protein is very large (\sim 500,000 Da) and contains two identical heavy chains that constitute the head and tail domains, together with two sets of light chains (two per head), which bind the heavy chains in the region between the head and tail. Myosin plays a key role in muscle contraction, being responsible for producing the contractile force.¹

Many authors have reported the intense proteolysis suffered by myosin during dry-cured ham processing. In this way, some authors observed through the use of SDS-PAGE gels a progressive disappearance of myosin heavy chain, myosin light chains 1 and 2 (MLC 1 and MLC 2), and troponins C and I, as well as an appearance of numerous smaller fragments in the 50-100 and 20-45 kDa regions.² More recently, an intense proteolysis of actin, tropomyosin, and myosin light chains extracted in the myofibrillar fraction of dry-cured hams with different ripening times was also reported.³ These authors concluded that after 12 months of ripening, most myofibrillar proteins were completely hydrolyzed.

Specific polypeptide sequences of actin,⁴ titin and MLC 1,⁵ creatine kinase,⁶ pyruvate kinase,⁷ and troponin proteins,⁸ have been already identified in dry-cured ham using proteomic tools. Information derived from the identification of the protein fragments naturally generated during dry-curing would be very important to better understand proteolysis and flavor development mechanisms occurring during this process.

The main objective of the present work was to provide information about the intense degradation of skeletal muscle myosin during dry-curing by means of the massive identification of peptides generated from both MLC 1 and MLC 2. This study was carried out using a quadrupole/time-of flight mass spectrometer for the identification of peptides, and the possible enzymes responsible for the hydrolysis of these proteins have also been discussed.

MATERIALS AND METHODS

Extraction and Fractionation of Peptides. In this study, three Serrano dry-cured hams produced using raw material from intensively reared industrial genotype pigs (Landrace \times Large White) were used. Pigs were 6 months old at the moment of slaughtering, and hams were processed in a local factory in Spain and submitted to a ripening process of 9 months.

Biceps femoris muscles of Spanish dry-cured ham with no extramuscular fat were processed following same method described by Mora et al.⁵ Peptides obtained after extraction were fractionated according to their molecular mass using size exclusion chromatography. For this purpose, a Sephadex G25 column (2.5 \times 65 cm, Amersham Biosciences, Uppsala, Sweden) was used as described in ref 5. Those fractions corresponding to a molecular weight between 1000 and 3000 Da were pooled together, dried under vacuum, and redissolved in 5 mL of 0.1% trifluoroacetic acid in water/ acetonitrile (95:5, v/v).

Isolation by Reversed-Phase Chromatography. A 100 μ L aliquot of the pooled mixture of peptides was injected into an HPLC Agilent 1100 series system (Agilent Technologies, Palo Alto, CA). Separation of peptides was carried out using a 250 imes 4.6 mm, 5 μ m, Symmetry C18 column from Waters (Milford, MA) at 25 °C. Mobile phases consisted of solvent A, containing 0.1% trifluoroacetic acid (TFA) in water, and solvent B, containing 0.05% TFA in water/ acetonitrile (5:95). Both mobile phases A and B were filtered through a 0.45 μ m filter and degassed prior to any analytical run. The chromatographic separation consisted of a 5 min isocratic gradient with solvent A, followed by a linear gradient from 0 to 40% of solvent B in 70 min at a flow rate of 1 mL/min. The separation was monitored at a wavelength of 214 nm, and 1 mL fractions were collected and lyophilized for further identification using tandem mass spectrometry.

Received:	October 18, 2010
Accepted:	December 26, 2010
Revised:	December 23, 2010
Published:	March 16, 2011

1 <u>0</u>	2 <u>0</u>	3 <u>0</u>	4 <u>0</u>	5 <u>0</u>	6 <u>0</u>
M APKKDVKKP	АААААРАРАР	арарарара	PKEEKIDLSA	ikiefskeqq	DEFKEAFLLF
7 <u>0</u>	8 <u>0</u>	9 <u>0</u>	10 <u>0</u>	11 <u>0</u>	12 <u>0</u>
DRTGECKITL	sqvgdvlral	GTNPTNAEVK	KVLGNPSNEE	MNAKKIEFEQ	FLPMLQAISN
13 <u>0</u>	14 <u>0</u>	15 <u>0</u>	16 <u>0</u>	17 <u>0</u>	18 <u>0</u>
NKDQGSYEDF	VEGL RVFDKE	GNGTVMGAEL	RHVLATLGEK	MKEEEVEALM	AGQEDSNGCI
19 <u>0</u> NYEAFVKHIM	SI				
Myosin light cl	nain 2 (protein a	accession numb	er O5XLD2 PI	G in UniProtKB	TrEMPI databasa
					TIENIDE UATADASC
1 <u>0</u>	2 <u>0</u>	3 <u>0</u>	40	50	6 <u>0</u>
MAPKKAKRRA	AAEGSSNVFS	MFDQTQIQEF	KEAF TVIDQN	RDGIIDKEDL	RDTFAAMGRL
1 <u>0</u>	2 <u>0</u>	3 <u>0</u>	40	50	6 <u>0</u>
mapkkakrra	AAEGSSNVFS	mfdqtqiqef	KEAF TVIDQN	RDGIIDKEDL	RDTFAAMGRL
7 <u>0</u>	8 <u>0</u>	9 <u>0</u>	100	110	12 <u>0</u>
nvkneeldam	MKEASGPINF	t vfltm fgek	LKGADPEDVI	TGAFKVLDPE	GKGTIKKHFL

Myosin light chain 1 (protein accession number A1XQT6_PIG in UniProtKB/TrEMBL database)

Figure 1. Sequences of porcine myosin light chain 1 and 2 proteins (NCBInr database accession no. ABK55642 and NP_001006592). The same sequences also correspond to the entries A1XQT6_PIG and Q5XLD2_PIG, respectively, in the UniProtKB/TrEMBL protein database. Letters in bold indicate the position of the identified peptides within the sequence.

Peptide Identification by Tandem Mass Spectrometry. Peptides contained in the fractions obtained after reversed-phase chromatography were separated by liquid chromatography coupled to MS/MS analysis to sequence the peptides using an Ultimate Plus/Famos nano LC system (LC Packings, Amsterdam, The Netherlands) and a QSTAR XL hybrid quadrupole-TOF instrument (AB Sciex Biosystems, Foster City, CA) equipped with a nanoelectrospray ion source (Protana, Odense, Denmark).

Fractions previously lyophilized using a VirTis Genesis 35EL lyophilizer (SP Scientific, Gardiner, NY) were diluted in 60 μ L of loading buffer (0.1% of formic acid and 2% of acetonitrile in water) and preconcentrated on a 0.3 \times 5 mm, 3 μ m, C18 trap column from LC Packings PepMap (Dionex Co., Amsterdam, The Netherlands) at a flow rate of 40 μ L/min and using 0.1% of TFA as mobile phase. After 3 min of preconcentration, the trap column was automatically switched in-line with a 0.075 imes 150 mm, 3 μ m, Dionex C18 PepMap column from LC Packings. Mobile phases consisted of solvent A, containing 0.1% formic acid in water, and solvent B, containing 0.1% formic acid in 95% acetonitrile. Chromatographic conditions were a linear gradient from 95 to 50% solvent A in 30 min at a flow rate of 0.2 μ L/min. The column outlet was directly coupled to a nanoeletrospray ion source (Protana) using a 15 µm PicoTip EMITTER SilicaTip needle (New Objective, Woburn, MA). The positive TOF mass spectra were recorded on the QSTAR instrument using information-dependent acquisition (IDA). TOF MS survey scan was recorded for mass range m/z 350–1800 followed by MS/MS scans of the three most intense peaks. Typical ion spray voltage was in the range of 2.5-3.0 kV, and nitrogen was used as collision gas. Other source parameters and spray position were optimized with a tryptic digest of protein mixture digest (LC Packings; P/N 161088).

Database Search. Automated spectral processing, peak list generation, and database search was performed using Analyst QS 1.1 (Applied Biosystems, Carlsbad, CA) in combination with the Mascot interface 2.2 (Matrix Science, Inc., Boston, MA) (hppt://www.matrixscience.com), and the ProteinPilot 3.0 software (Applied Biosystems)

with Paragon algorithm. Mascot.dll 1.6b25 and ABSciex.DataAccess. Wiff File DataReader.dll were used for importing data to Mascot and Protein Pilot, respectively.

Mascot searches were done using the enzyme option "none", and a tolerance on the mass measurement of 100 ppm in MS mode and 0.6 Da for MS/MS ions. Using ProteinPilot software is not necessary to fix mass tolerance or possible modifications because Paragon algorithm used preset values due to the fact that features such as modifications, substitutions, and cleavage events are modeled with probabilities rather than by discrete user-controlled settings.

Identification of protein origin of peptides was done using NCBI nonredundant protein database. Matches of MS/MS spectra against sequences of the database were verified manually.

RESULTS AND DISCUSSION

Dry-cured ham peptides were extracted and isolated, and a total of 225 peptides originated from myosin light chain have been tentatively identified. One hundred and thirty-seven peptides corresponded to MLC 1 fragments, whereas the remaining 88 showed identity with MLC 2. As can be observed in Figure 1, peptides identified as MLC 1 fragments covered around 68% of the total sequence of the MLC 1 protein, whereas the fragments identified from MLC 2 covered 47% of the respective sequence.

Fragments generated from MLC 1 and MLC 2 proteins came from different sections of the corresponding sequences. Tables 1–3 show the sequences of the MLC 1 fragments identified by LC-MS/MS from dry-cured ham. Peptides have been rearranged and aligned according to their positions in the sequence of the proteins. Figure 2 shows the MS/MS spectrum corresponding to peptide 69 from MLC 1 (Table 1). Table A of the Supporting Information shows the observed and calculated masses of the MLC 1 identified peptides, as well as the score obtained, the mass modifications suffered by the peptides, and

Table 1. Myosin Light Chain 1 Peptides Tentatively Identified in Spanish Dry-Cured Ham Located between Position	is 1 and 60 in
the Complete Sequence (Protein Accession No. A1XQT6_PIG in UniProtKB/TrEMBL)	

Peptide	1 <u>0</u>	2 <u>0</u>	3 <u>0</u>	4 <u>0</u>	5 <u>0</u>	Position
No.	APKKDVKKPAAAAAP	APAPAPAPA	PAPAPPKEEF	KIDLSAIKII	FSKEQQDE	
1	CI M				REVEOOD	15 52
2	AP	APAPAPAPA APAPAPAPA	PAPAPPKEEP	KIDLSAIKIE	F SKEQQDE	15-44
3		APAPAPA	PAPAPPKEEP	KIDLSAIKIE	3	19-44
4	AAAP	APAPAPAPA	PAPAPPKEEF	KIDLSAIK		13-42
5	AAP.	APAPAPAPA	PAPAPPKEEP	KIDLSAIK		14-42
0 7	AP. P	ΑΡΑΡΑΡΑΡΑ Αραραραρα	PAPAPPKEE	KIDLSAIK		15-42
8	_	APAPAPAPA	PAPAPPKEEP	KIDLSAIK		17-42
9		PAPAPAPA	PAPAPPKEE	KIDLSAIK		18-42
10		APAPAPA	PAPAPPKEEP	CIDLSAIK		19-42
11		РАРАРА арара	PAPAPPKEEP	KIDLSAIK		20-42
12		APA	PAPAPPKEEP	CIDLSAIK		23-42
14	AAAP	АРАРАРАРА	PAPAPPKEE	KIDLSAI		13-41
15	AAP	APAPAPAPA	PAPAPPKEEP	KIDLSAI		14-41
16 17	A P.	APAPAPAPA ADADADADA	PAPAPPKEEP	KIDLSAI		15-41 16-41
18	E	APAPAPAPA	PAPAPPKEEP	KIDLSAI		17-41
19		PAPAPAPA	PAPAPPKEE	KIDLSAI		18-41
20	AP	APAPAPAPA	PAPAPPKEEF	KIDLSA		15-40
21	P	APAPAPAPA	PAPAPPKEEP	KIDLSA		16-40
22	АААР	АРАРАРАРА Арарарара	PAPAPPKEEP	CIDLSA		17-40
24	AAP	APAPAPAPA	PAPAPPKEEP	KIDLS		14-39
25	AP	APAPAPAPA	PAPAPPKEE	KIDLS		15-39
26	P	APAPAPAPA	PAPAPPKEEP	CIDLS		16-39
27		ΑΡΑΡΑΡΑΡΑ Σαραραρα	PAPAPPKEEP	KIDLS KIDLS		17-39
29		APAPAPA	PAPAPPKEEP	CIDLS		19-39
30		PAPAPA	PAPAPPKEE	KIDLS		20-39
31	APKKDVKKPAAAAAP	APAPAPAPA	PAPAPPKEE	KIDL		1-38
32	AAAP.	ΑΡΑΡΑΡΑΡΑ Λολολολολ	PAPAPPKEEP	KIDL KIDL		13-38
34	AP.	APAPAPAPA	PAPAPPKEE	KIDL		14-38
35	P	АРАРАРАРА	PAPAPPKEEP	KIDL		16-38
36		APAPAPAPA	PAPAPPKEEF	KIDL		17-38
37		PAPAPAPA	PAPAPPKEEP	KIDL		18-38
39		PAPAPA	PAPAPPKEEP	KIDL		20-38
40		APAPA	PAPAPPKEEF	KIDL		21-38
41			APPKEEF	KIDL		28-38
42	APKKDVKKPAAAAAP	APAPAPAPA	PAPAPPKEEP	(ID		1-37
43 44	AAAP	АРАРАРАРА Арарарара	PAPAPPKEEP			8-37 13-37
45	AAP	APAPAPAPA	PAPAPPKEEP	CID		14-37
46	AP	APAPAPAPA	PAPAPPKEEF	KID		15-37
47	P	APAPAPAPA	PAPAPPKEEP	KID		16-37
48 49		ΑΡΑΡΑΡΑΡΑ ΡΔΡΔΡΔΡΔ	PAPAPPKEEP			17-37
50		APAPA	PAPAPPKEE	KID		21-37
51		PAPA	PAPAPPKEEP	KID		22-37
52		APA	PAPAPPKEEP	CID		23-37
53 54		PA	PAPAPPKEEP	KID KID		24-37
55			PPKEEF	KID		30-37
56	AAAP	APAPAPAPA	PAPAPPKEE	<i 1<="" th=""><th></th><th>13-36</th></i>		13-36
57	AAP	APAPAPAPA	PAPAPPKEEP	<i< th=""><th></th><th>14-36</th></i<>		14-36
58 59	AP	APAPAPAPA Adadadada	PAPAPPKEEP	(15-36
60		APAPAPAPA	PAPAPPKEEK	Ĩ		17-36
61		PAPAPAPA	PAPAPPKEEK	I		18-36
62		APAPAPA	PAPAPPKEEK	I		19-36
63 64	ΑΡΚΚΟΥΚΚΡΑΑΑΑΑΡ	АРАРАРАРА.	РАРАРРКЕЕК Рарарркеек			1-35 8-35
65	AAAAPI	APAPAPAPA	PAPAPPKEEK			12-35

Table 1. Continued

Peptide	1 <u>0</u>	2 <u>0</u>	3 <u>0</u>	4 <u>0</u>	5 <u>0</u>	Position
No.	APKKDVKKPAAAAA	PAPAPAPAP	APAPAPPKEEB	KIDLSAIKIE	FSKEQQDE	
66	AAA	PAPAPAPAP.	APAPAPPKEE	К		13-35
67	AA	PAPAPAPAP	APAPAPPKEE	к		14-35
68	P	PAPAPAPAP	APAPAPPKEE	К		15-35
69		PAPAPAPAP	APAPAPPKEE	К		16-35
70		APAPAPAP	APAPAPPKEE	К		17-35
71		PAPAP	APAPAPPKEE	К		20-35
72		PAP	APAPAPPKEE	К		22-35
73		AP	APAPAPPKEE	К		23-35
7 4		P	APAPAPPKEE	К		24-35
75			APAPAPPKEE	K		25-35
76			PAPPKEE	К		28-35
77	APKKDVKKPAFAAF	PAPAPAPAP	APAPAPPKEE			1-34
78	AAA	PAPAPAPAP	APAPAPPKEE			13-34
79	AA	PAPAPAPAP	APAPAPPKEE			14-34
80	1-	PAPAPAPAP	APAPAPPKEE			15-34
81		PAPAPAPAP	APAPAPPKEE			16-34
82		APAPAPAP	APAPAPPKEE			17-34
83		PAPAPAP.	APAPAPPKEE			18-34
84		APAPAP.	APAPAPPKEE			19-34
85	A P K K D V K K P A F A A F	PAPAPAPAP	АРАРАРРКЕ			1-33
86	AAA	PAPAPAPAP	АРАРАРРКЕ			13-33
87	AA	PAPAPAPAP.	АРАРАРРКЕ			14-33
88	P	PAPAPAPAP	АРАРАРРКЕ			15-33
89		PAPAPAPAP	APAPAPPKE			16-33
90		APAPAPAP.	APAPAPPKE			17-33
91		PAPAPAP.	APAPAPPKE			18-33
92		APAPAP.	APAPAPPKE			19-33
93		APAP.	АРАРАРРКЕ			21-33
94	APKKDVKKPAFAAF	PAPAPAPAP.	АРАРАРРК			1-32
95	F	PAPAPAPAPAP.	APAPAPPK			15-32
96		PAPAPAPAP.	APAPAPPK			16-32
97		APAPAPAP.	APAPAPPK			17-32
98	APKKDVKKPAFAAF		APAPAPP			1-31
99 100	AF					14-31
100	F					15-51
101		PAPAPAPAP.				10-51
102		AFAPAP.	AFAFAFF			20.21
103	7	ראראר. סיסגסגס	AFAFAFF ADADAD			20-31
104	F		AFAFAF ADADAD			15-50
105	7	FAFAFAFAFAF.	AFAFAF NDND			10-30
100	א ייג גיגמטטערואאס ב	IFAFAFAFAFAF.	AFAF			1.1.4
107	AI KKUVIKEAFAAF	<u>-</u>				1-14

ARTICLE

the charge state of the corresponding ion detected in MS/MS analysis. A total of 69 of the 137 fragments identified using the Paragon algorithm were also identified using Mascot. Sequences of peptides 67, 69, 70, 72, 74, and 76 originated from MLC 1 (see Table 1) have been previously described by Mora et al.⁵ Tables 4 and 5 show MLC 2 sequences tenatitively identified in this study, whereas Table B of the Supporting Information describe the most relevant data related to these fragments. With respect to MLC 2, a total of 63 of the 88 fragments identified using the Paragon algorithm were also identified using Mascot search engine.

The muscle myofibrillar protein fraction is involved in the numerous changes that take place due to the enzymatic proteolysis occurring during the processing of dry-cured ham. Mainly responsible for the degradation of myosin light chain during drycured ham processing are muscle endopeptidases, which generate protein fragments, and certain groups of exopeptidases degrading the previously generated polypeptides into smaller ones. Exopeptidases are also responsible for the generation of dipeptides and free amino acids, which have been proved to contribute to flavor development in dry-cured products.

Role of Endopeptidases in the Degradation of Myosin Light Chains. Cathepsin stability during dry-cured ham processing has been widely studied, with the conclusion that cathepsins B, H, and L are quite stable, showing activity even after 15 months of processing,^{2,9} whereas cathepsin D is not so stable, its activity disappearing after 6–10 months of processing.^{2,10}

Several studies relate the action of cathepsins with the progressive disappearance of myosin. In this way, Hirao et al.¹¹ incubated rabbit skeletal muscle myosin with cathepsin B and proved the degradation of myosin heavy chain and MLC 2 in the presence of this enzyme. On the other hand, Etherington¹² established that both cathepsins B and D were especially active against myosin. This author tested purified liver cathepsin L against intact myofibrils and found the enzyme active in degrading myosin, although to a lesser extent than other proteins such as titin. In contrast, Okitani et al.¹³ reported that myosin was not

Peptide	8 <u>0</u>	9 <u>0</u>	10 <u>0</u>	1 1 <u>0</u>	Positior
No.	SQVGDVLRALGTNP	TNAEVKKVLG	NPSNEEMNAK	KIEFEQ	
108			NPSNEEMNAK	KIEFEQ	95-110
109		AEVKKVLG	NPSNEEM		87-10
110	GTNP	TNAEVKKVLG	NPSN		81-9
111	TNP	TNAEVKKVLG	NPSN		82-98
112		AEVKKVLG	NPSN		87-93
113	GTNP	TNAEVKKVLG	NPS		81-9
114	TNP	TNAEVKKVLG	NPS		82-9
115		TNAEVKKVLG	NPS		85-9
116		AEVKKVLG	NPS		87-9
117	GTNP	TNAEVKKVLG	NP		81-9
118	GTNP	TNAEVKKVLG	ł		81-94
119	TNP	TNAEVKKVLG	ł		82-9-
120	NP	TNAEVKKVLG	ł		83-94
121	QVGDVLRALGTNP	TNAEVKKV			72-92
122	SQVGDVLRALGTNP	TNAEVKK			71-9
123	QVGDVLRALGTNP	TNAEVKK			72-9
124	QVGDVLRALGTNP	TNAEVK			72-9
125	QVGDVLRALGTNP	TNAE			72-8
126	QVGDVLRALGTNP	Т			72-8
127	SQVGDVLRALG				71-8

Table 2. Myosin Light Chain 1 Peptides Tentatively Identified in Spanish Dry-Cured Ham Located between Positions 61 and 120 in the Complete Sequence (Protein Accession No. A1XQT6 PIG in UniProtKB/TrEMBL)

Table 3. Myosin Light Chain 1 Peptides Tentatively Identified in Spanish Dry-Cured Ham Located between Positions 134 and 175 in the Complete Sequence (Protein Accession No. A1XQT6 PIG in UniProtKB/TrEMBL)

Peptide	14 <u>0</u>	15 <u>0</u>	16 <u>0</u>	17 <u>0</u>	Position
No.	RVFDKEGI	NGTVMGAELRHVI	LATLGEKMKEE	EVEALMAGQED	
128	RVFDKEGI	NGTVMGAELRH			138-152
129	VFDKEGI	NGTVMGAELRH			139-152
130	DKEGI	NGTVMGAELRH			141-152
131		TVMGAELRH			147-152
132	RVFDKEGI	NGTVMGAELR			138-151
133	DKEGI	NGTVMGAELR			141-151
134			MKEEE	VEALMAGQED	161-175
135			ATLGEKMKEE	EVEAL	155-169
136			EKMKEE	EVEAL	159-169
137			ATLGEKMKEE	EVE	155-167

degraded by rabbit skeletal muscle cathepsin B, whereas cathepsin L isolated from rabbit skeletal muscle could hydrolyze myosin at pH 4.1.

Toldrá et al.² published electrophoretic profiles of Biceps femoris muscle showing a progressive disappearance of MLC 1 and MLC 2 during the dry-curing process. According to these authors, the disappearance of these proteins could be due to cathepsins L and D, even if cathepsin D activity is minimal after some months of processing due to its inhibition in the presence of a high concentration of salt.¹⁴ The action of cathepsin D on myosin has been widely studied by many authors, being considered responsible for the major breakdown of the main myofibrillar proteins such as myosin, actin, or troponin during meat aging.¹⁴ In this way, Robbins et al.¹⁵ established that cathepsin D from muscle degrades myofibrils under post-mortem pH conditions (5.1-5.3), causing an alteration of Z disk structure and breakdown of myosin heavy and light chains. The degradation of myosin light chains by cathepsin D has also been studied by incubating purified cathepsin D with myofibrils at pH 5.5 (37 °C); however, according to these authors, they are degraded at a much slower rate than that for myosin heavy chain.¹⁶

Calpains participate in proteolytic events only during the first stages of curing processes because an excess of salt together with the pH drop completely inhibits their activity. In fact, many authors have established that calpains do not degrade myosin and actin,¹⁷ although others established that MLC 1 could be degraded in vitro by μ -calpain, suggesting MLC 1 as a novel substrate of μ -calpain-mediated regulation.¹⁸

Cathepsins and calpains have been the main focus of research regarding post-mortem proteolysis, considering the calpain system as the major contributor to meat tenderization.¹⁹ However, it has been suggested during recent years that meat tenderization could be also due to the action of proteolytic enzymes such as caspases and the proteasome.^{20,21} In fact, some authors investigated the potential role of recombinant caspase 3 in meat tenderization, observing MLC 3 degradation products with increasing concentrations of recombinant caspase 3.^{22,23} On the other hand, the proteasome action against MLC was proved when the inhibition of proteasome chymotrypsin and trypsin-like activity results in the lack of degradation of this protein.²⁴

Role of Exopeptidases in the Degradation of Myosin Light Chain. Dipeptidyl peptidases (DPP I-IV) are a group of

Figure 2. Example of MS/MS spectrum of ion 635.38^{3+} that corresponds to peptide 69 from MLC 1. Peptide sequence matching with the fragmentation ion spectrum is shown in capital letters, together with observed *b* and *y* ions. The spectrum is presented with its corresponding table with the matched ions in bold letters.

Table 4. Myosin Light Chain 2 Peptides Tentatively Identified in Spanish Dry-Cured Ham Located between Positions 34 and 79 in the Complete Sequence (Protein Accession No. Q5XLD2 PIG in UniProtKB/TrEMBL)

Peptide	40	50	60	70	Position
No.	TVIDQNRDGI	IDKEDLRDTFAX	AMGRLNVK	NEELDAMMKEASGPI	N
1	TVIDQNRDGI	IDKEDLRDT			35-53
2	RDGI	IDKEDLRDT			41-53
3	TVIDQNRDGI	IDKEDLRD			35-52
4	VIDQNRDGI	IIDKEDLRD			36-52
5	IDQNRDGI	IDKEDLRD			37-52
6	DQNRDGI	IDKEDLRD			38-52
7	QNRDGI	IDKEDLRD			39-52
8	NRDGI	IDKEDLRD			40-52
9	R D G I	IDKEDLRD			41-52
10	G I	IDKEDLRD			42-52
11]	IDKEDLRD			43-52
12	TVIDQNRDGI	IDKEDLR			35-51
13	VIDQNRDGI	IIDKEDLR			36-51
14	IDQNRDGI	IDKEDLR			37-51
15	DQNRDGI	IDKEDLR			38-51
16	G I	IIDKEDLR			43-51
17]	IDKEDLR			44-51
18	TVIDQNRDGI	IDKED			35-19
19	VIDQNRDGI	IDKED			36-49
20	NRDGI	IDKE			40-48
21	TVIDQNRDGI	IDK			35-47
22	VIDQNRDGI	IIDK			36-47
23	TVIDQNRDG				35-42
24	TVIDQNRD				35-41
25			N V K I	NEELDAMMKEASGPI	N 61-79
26			V K I	NEELDAMMKEASGPI	N 62-79
27				AMMKEASGPI	N 69-79
28			VKI	NEELDAMMKEASGP	62-77
29			V K I	NEELDAMMKEA	62-74
30			NVKI	NEELDAMMKE	61-73
31			V K I	NEELDAMMKE	62-73
32			GRLNVKI	NEELDAM	58-70

Table 5. Myosin Light Chain 2 Peptides Tentatively Identified in Spanish Dry-Cured Ham Located between Positions 86 and	124
in the Complete Sequence (Protein Accession No. Q5XLD2_PIG in UniProtKB/TrEMBL)	

No. MFGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLEEL 33 VLDPEGKGTIKKHFLEEL 106-123 34 PEGKGTIKKHFLEEL 109-123 35 GKGTIKKHFLEEL 111-123 36 KGTIKKHFLEEL 112-123 37 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 81-122 38 LKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 91-122 39 PEDVITGAFKVLDPEGKGTIKKHFLEE 91-122 40 VLDPEGKGTIKKHFLEE 106-123 41 PEGKGTIKKHFLEE 106-122 42 GKGTIKKHFLEE 106-122 43 KGTIKKHFLEE 106-121 44 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLE 87-121 45 LKGADPEDVITGAFKVLDPEGKGTIKKHFLE 96-121 46 PEDVITGAFKVLDPEGKGTIKKHFLE 106-121 47 VLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 106-121 44 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLE 106-112 49 KVLDPEGKGTIKKHFLE 106-121
33 VLDPEGKGTIKKHFLEEL 106-123 34 PEGKGTIKKHFLEEL 109-123 35 GKGTIKKHFLEEL 111-123 36 KGTIKKHFLEEL 111-123 37 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 87-122 38 LKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 91-122 39 PEDVITGAFKVLDPEGKGTIKKHFLEE 106-123 40 VLDPEGKGTIKKHFLEE 106-122 41 PEGKGTIKKHFLEE 106-122 42 GKGTIKKHFLEE 110-122 43 KGTIKKHFLEE 111-122 44 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 111-122 44 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLE 111-122 45 LKGADPEDVITGAFKVLDPEGKGTIKKHFLE 111-122 46 PEDVITGAFKVLDPEGKGTIKKHFLE 112-122 47 VLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 106-121
33 VLDPEGKGTIKKHFLEEL 106-123 34 PEGKGTIKKHFLEEL 109-123 35 GKGTIKKHFLEEL 111-123 36 KGTIKKHFLEEL 112-123 37 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 87-122 38 LKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 96-122 39 PEDVITGAFKVLDPEGKGTIKKHFLEE 106-123 40 VLDPEGKGTIKKHFLEE 106-122 41 PEGKGTIKKHFLEE 106-122 42 GKGTIKKHFLEE 106-122 43 KGTIKKHFLEE 111-123 44 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLE 106-121 45 LKGADPEDVITGAFKVLDPEGKGTIKKHFLE 111-122 46 PEDVITGAFKVLDPEGKGTIKKHFLE 106-121 47 VLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 106-121 50 GADPEDVITGAFKVLDPEGKGTIKKHFLE 106-121
34 PEGKGTIKKHFLEEL 109-123 35 GKGTIKKHFLEEL 111-133 36 KGTIKKHFLEEL 112-123 37 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 87-122 38 LKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 91-122 39 PEDVITGAFKVLDPEGKGTIKKHFLEE 106-122 40 VLDPEGKGTIKKHFLEE 106-122 41 PEGKGTIKKHFLEE 106-122 42 GKGTIKKHFLEE 111-123 43 KGTIKKHFLEE 112-122 44 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 111-122 45 LKGADPEDVITGAFKVLDPEGKGTIKKHFLE 111-122 46 PEDVITGAFKVLDPEGKGTIKKHFLE 91-121 46 PEDVITGAFKVLDPEGKGTIKKHFLE 106-121 47 VLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 106-121 50 GADPEDVITGAFKVLDPEGKGTIKKHFLE 106-121 51 KVLDPEGKGTIKKHF 107-119
35 KGTIKKHFLEEL 111-123 36 KGTIKKHFLEEL 112-123 37 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 87-122 38 LKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 91-122 39 PEDVITGAFKVLDPEGKGTIKKHFLEE 90-122 40 VLDPEGKGTIKKHFLEE 109-122 41 PEGKGTIKKHFLEE 109-122 42 GKGTIKKHFLEE 111-123 43 KGTIKKHFLEE 111-124 44 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLE 91-121 45 LKGADPEDVITGAFKVLDPEGKGTIKKHFLE 91-121 46 PEDVITGAFKVLDPEGKGTIKKHFLE 96-121 47 VLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 105-119 51 GADPEDVITGAFKVLDPEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 106-121 50 GADPEDVITGAFKVLDPEGKGTIKKHFLE 106-117 51 FKVLDPEGKGTIKKHF 107-119 53 LDPEGKGTIKKHF 106-117
37 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 112123 38 LKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 91-122 39 PEDVITGAFKVLDPEGKGTIKKHFLEE 106-122 40 VLDPEGKGTIKKHFLEE 109-122 41 PEGKGTIKKHFLEE 109-122 42 GKGTIKKHFLEE 111-122 43 KGTIKKHFLEE 112-122 44 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLE 91-121 45 LKGADPEDVITGAFKVLDPEGKGTIKKHFLE 96-121 46 PEDVITGAFKVLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 109-121 49 KVLDPEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 106-121 50 GADPEDVITGAFKVLDPEGKGTIKKHFLE 106-121 51 FKVLDPEGKGTIKKHFLE 106-117 52 KVLDPEGKGTIKKHFLE 109-119 53 LDPEGKGTIKKHF 107-119 54 DPEGKGTIKKHF 107-119 55<
38 LKGADPEDVITGAFKVLDPEGKGTIKKHFLEE 91-122 39 PEDVITGAFKVLDPEGKGTIKKHFLEE 106-122 40 VLDPEGKGTIKKHFLEE 106-122 41 PEGKGTIKKHFLEE 109-122 42 GKGTIKKHFLEE 111-122 43 KGTIKKHFLEE 111-122 44 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLE 87-121 45 LKGADPEDVITGAFKVLDPEGKGTIKKHFLE 91-121 46 PEDVITGAFKVLDPEGKGTIKKHFLE 91-121 46 PEDVITGAFKVLDPEGKGTIKKHFLE 91-121 47 VLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 109-121 49 KVLDPEGKGTIKKHFLE 109-121 49 KVLDPEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 109-120 50 GADPEDVITGAFKVLDPEGKGTIKKHFLE 105-120 50 GADPEDVITGAFKVLDPEGKGTIKKHF 105-119 51 FKVLDPEGKGTIKKHF 104-119 52 FKVLDPEGKGTIKKHF 108-119 53 LDPEGKGTIKKHF 109-119
39 PEDVITGAFKVLDPEGKGTIKKHFLEE 96-122 40 VLDPEGKGTIKKHFLEE 106-122 41 PEGKGTIKKHFLEE 109-122 42 GKGTIKKHFLEE 111-122 43 KGTIKKHFLEE 112-122 44 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLE 87-121 45 LKGADPEDVITGAFKVLDPEGKGTIKKHFLE 91-121 46 PEDVITGAFKVLDPEGKGTIKKHFLE 106-121 47 VLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 109-121 49 KVLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 105-120 50 GADPEDVITGAFKVLDPEGKGTIKKHFL 105-119 51 FKVLDPEGKGTIKKHF 104-119 52 KVLDPEGKGTIKKHF 107-119 53 LDPEGKGTIKKHF 108-119 55 PEGKGTIKKHF 109-119 56 FKVLDPEGKGTIKKH 104-118 57 VLDPEGKGTIKKH 104-118 58 VLDPEGKGTIKKH 106-118 59 PEGKGTIKKH
40 VLDPEGKGTIKKHFLEE 106-122 41 PEGKGTIKKHFLEE 109-122 42 GKGTIKKHFLEE 111-122 43 KGTIKKHFLEE 111-122 44 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLE 87-121 45 LKGADPEDVITGAFKVLDPEGKGTIKKHFLE 91-121 46 PEDVITGAFKVLDPEGKGTIKKHFLE 96-121 47 VLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 109-121 49 KVLDPEGKGTIKKHFLE 105-120 50 GADPEDVITGAFKVLDPEGKGTIKKHFL 105-119 51 KVLDPEGKGTIKKHF 104-119 52 KVLDPEGKGTIKKHF 107-119 53 LDPEGKGTIKKHF 108-119 54 DFEGKGTIKKHF 108-119 55 PEGKGTIKKHF 108-118 58 VLDPEGKGTIKKH 106-118 59 PEGKGTIKKH 106-118 59 PEGKGTIKK 106-117 61 KVLDPEGKGTIKK
41 PEGKGTIKKHFLEE 109-122 42 GKGTIKKHFLEE 111-122 43 KGTIKKHFLEE 112-122 44 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLE 87-121 45 LKGADPEDVITGAFKVLDPEGKGTIKKHFLE 91-121 46 PEDVITGAFKVLDPEGKGTIKKHFLE 96-121 47 VLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 109-121 49 KVLDPEGKGTIKKHFL 105-120 50 GADPEDVITGAFKVLDPEGKGTIKKHF 107-119 51 FKVLDPEGKGTIKKHF 104-119 52 KVLDPEGKGTIKKHF 107-119 53 LDPEGKGTIKKHF 108-119 54 DPEGKGTIKKHF 108-119 55 PEGKGTIKKHF 109-118 56 FKVLDPEGKGTIKKH 104-118 57 KVLDPEGKGTIKKHF 109-118 60 FKVLDPEGKGTIKK 106-117 58 VLDPEGKGTIKK 106-117 61 KVLDPEGKGTIKK 106-117 62 VLDPEGKGTIKK <td< td=""></td<>
42 GKGTIKKHFLEE 111-122 43 KGTIKKHFLEE 112-122 44 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLE 87-121 45 LKGADPEDVITGAFKVLDPEGKGTIKKHFLE 91-121 46 PEDVITGAFKVLDPEGKGTIKKHFLE 96-121 47 VLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 109-121 49 KVLDPEGKGTIKKHFL 105-120 50 GADPEDVITGAFKVLDPEGKGTIKKHF 104-119 51 FKVLDPEGKGTIKKHF 104-119 52 KVLDPEGKGTIKKHF 106-119 53 LDPEGKGTIKKHF 107-119 54 DPEGKGTIKKHF 107-119 55 PEGKGTIKKHF 107-119 56 FKVLDPEGKGTIKKHF 107-118 57 KVLDPEGKGTIKKHF 107-118 58 VLDPEGKGTIKKHF 107-118 59 PEGKGTIKKH 106-118 59 PEGKGTIKK 106-117 60 FKVLDPEGKGTIKK 106-117 61 KVLDPEGKGTIKK 107
43 KGTIKKHFLEE 112-122 44 FGEKLKGADPEDVITGAFKVLDPEGKGTIKKHFLE 87-121 45 LKGADPEDVITGAFKVLDPEGKGTIKKHFLE 91-121 46 PEDVITGAFKVLDPEGKGTIKKHFLE 96-121 47 VLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 106-121 49 KVLDPEGKGTIKKHFLE 105-120 50 GADPEDVITGAFKVLDPEGKGTIKKHF 103-119 51 FKVLDPEGKGTIKKHF 104-119 52 KVLDPEGKGTIKKHF 104-119 53 LDPEGKGTIKKHF 106-119 54 DPEGKGTIKKHF 107-119 55 FKVLDPEGKGTIKKHF 108-119 56 FKVLDPEGKGTIKKHF 109-118 57 VLDPEGKGTIKKH 104-118 58 VLDPEGKGTIKKH 106-118 59 PEGKGTIKKH 106-118 59 PEGKGTIKK 104-117 61 KVLDPEGKGTIKK 104-117 62 VLDPEGKGTIKK 104-117 63 PEGKGTIKK 104-1
44 FGERLEKGADPEDVITGAFKVLDPEGKGTIKKHFLE 87-121 45 LKGADPEDVITGAFKVLDPEGKGTIKKHFLE 91-121 46 PEDVITGAFKVLDPEGKGTIKKHFLE 96-121 47 VLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 109-121 49 KVLDPEGKGTIKKHFLE 105-120 50 GADPEDVITGAFKVLDPEGKGTIKKHF 93-119 51 FKVLDPEGKGTIKKHF 104-119 52 KVLDPEGKGTIKKHF 105-119 53 LDPEGKGTIKKHF 107-119 54 DPEGKGTIKKHF 108-119 55 PEGKGTIKKHF 109-119 56 FKVLDPEGKGTIKKH 104-118 57 KVLDPEGKGTIKKH 104-118 58 VLDPEGKGTIKKH 106-118 59 PEGKGTIKKH 106-118 60 FKVLDPEGKGTIKK 104-117 61 KVLDPEGKGTIKK 104-117 62 VLDPEGKGTIKK 104-117 63 PEGKGTIKK 109-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIKK 106-117 65 LKGADPEDVITGAFKVLDPEGKGTIK <td< td=""></td<>
45 DRGADPEDVITGAFKVLDPEGKGTIKKHFLE 96-121 46 PEDVITGAFKVLDPEGKGTIKKHFLE 106-121 47 VLDPEGKGTIKKHFLE 109-121 48 PEGKGTIKKHFLE 105-120 50 GADPEDVITGAFKVLDPEGKGTIKKHFL 105-120 50 GADPEDVITGAFKVLDPEGKGTIKKHFF 104-119 51 FKVLDPEGKGTIKKHF 104-119 52 KVLDPEGKGTIKKHF 107-119 53 LDPEGKGTIKKHF 107-119 54 DPEGKGTIKKHF 107-119 55 PEGKGTIKKHF 107-119 56 FKVLDPEGKGTIKKHF 107-119 57 KVLDPEGKGTIKKH 104-118 57 PEGKGTIKKHF 109-119 56 FKVLDPEGKGTIKKH 104-118 57 KVLDPEGKGTIKKH 104-118 59 PEGKGTIKKH 105-118 60 FKVLDPEGKGTIKK 105-117 61 KVLDPEGKGTIKK 105-117 62 VLDPEGKGTIKK 105-117 63 PEGKGTIKK 105-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 91-116
47 VLDPEGKGTIKKHFLE 106-121 48 PEGKGTIKKHFLE 109-121 49 KVLDPEGKGTIKKHFL 105-120 50 GADPEDVITGAFKVLDPEGKGTIKKHF 93-119 51 FKVLDPEGKGTIKKHF 93-119 52 KVLDPEGKGTIKKHF 104-119 53 LDPEGKGTIKKHF 107-119 54 DPEGKGTIKKHF 108-119 55 PEGKGTIKKHF 109-119 56 FKVLDPEGKGTIKKH 104-118 57 VLDPEGKGTIKKH 104-118 58 VLDPEGKGTIKKH 106-118 59 PEGKGTIKKH 106-118 60 FKVLDPEGKGTIKK 104-117 61 KVLDPEGKGTIKK 104-117 62 VLDPEGKGTIKK 104-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 106-117 65 LKGADPEDVITGAFKVLDPEGKGTIK 87-116 66 ADPEDVITGAFKVLDPEGKGTIK 91-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 67 PEDVITGAFKVLDPEGKGTIK 96-116
48 PEGKGTIKKHFLE 109-121 49 KVLDPEGKGTIKKHFL 105-120 50 GADPEDVITGAFKVLDPEGKGTIKKHFL 105-120 51 FKVLDPEGKGTIKKHFL 105-120 52 KVLDPEGKGTIKKHF 93-119 53 LDPEGKGTIKKHF 104-119 54 DPEGKGTIKKHF 105-119 55 PEGKGTIKKHF 108-119 56 FKVLDPEGKGTIKKHF 109-119 56 FKVLDPEGKGTIKKH 104-118 57 VLDPEGKGTIKKH 104-118 58 VLDPEGKGTIKKH 106-118 59 PEGKGTIKKH 106-118 60 FKVLDPEGKGTIKK 104-117 61 KVLDPEGKGTIKK 104-117 62 VLDPEGKGTIKK 104-117 63 PEGKGTIKK 106-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 87-116 65 LKGADPEDVITGAFKVLDPEGKGTIK 91-116 66 ADPEDVITGAFKVLDPEGKGTIK 94-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 67 PEDVITGAFKVLDPEGKGTIK 96-116
49 KVLDPEGKGTIKKHFL 105-120 50 GADPEDVITGAFKVLDPEGKGTIKKHF 93-119 51 FKVLDPEGKGTIKKHF 104-119 52 KVLDPEGKGTIKKHF 105-119 53 LDPEGKGTIKKHF 107-119 54 DPEGKGTIKKHF 108-119 55 PEGKGTIKKHF 109-119 56 FKVLDPEGKGTIKKH 104-118 57 VLDPEGKGTIKKH 104-118 58 VLDPEGKGTIKKH 106-118 59 PEGKGTIKKH 109-118 60 FKVLDPEGKGTIKK 104-117 61 KVLDPEGKGTIKK 106-117 62 VLDPEGKGTIKK 106-117 63 PEGKGTIKK 106-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 87-116 65 LKGADPEDVITGAFKVLDPEGKGTIK 91-116 66 ADPEDVITGAFKVLDPEGKGTIK 94-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 67 PEDVITGAFKVLDPEGKGTIK 96-116
50 GADPEDVITGAFKVLDPEGKGTIKKHF 93-119 51 FKVLDPEGKGTIKKHF 104-119 52 KVLDPEGKGTIKKHF 105-119 53 LDPEGKGTIKKHF 107-119 54 DPEGKGTIKKHF 108-119 55 PEGKGTIKKHF 109-119 56 FKVLDPEGKGTIKKH 104-118 57 VLDPEGKGTIKKH 104-118 58 VLDPEGKGTIKKH 106-118 59 PEGKGTIKK 109-118 60 FKVLDPEGKGTIKK 104-117 61 KVLDPEGKGTIKK 104-117 62 VLDPEGKGTIKK 104-117 63 PEGKGTIKK 106-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 87-116 65 LKGADPEDVITGAFKVLDPEGKGTIK 91-116 66 ADPEDVITGAFKVLDPEGKGTIK 94-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 67 PEDVITGAFKVLDPEGKGTIK 96-116
51 FKVLDPEGKGTIKKHF 104-119 52 KVLDPEGKGTIKKHF 105-119 53 LDPEGKGTIKKHF 107-119 54 DPEGKGTIKKHF 108-119 55 PEGKGTIKKHF 109-119 56 FKVLDPEGKGTIKKH 104-118 57 KVLDPEGKGTIKKH 104-118 58 VLDPEGKGTIKKH 105-118 59 PEGKGTIKKH 109-118 60 FKVLDPEGKGTIKK 109-118 60 FKVLDPEGKGTIKK 104-117 61 KVLDPEGKGTIKK 104-117 62 VLDPEGKGTIKK 104-117 63 PEGKGTIKK 104-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 87-116 65 LKGADPEDVITGAFKVLDPEGKGTIK 91-116 66 ADPEDVITGAFKVLDPEGKGTIK 94-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 67 PEDVITGAFKVLDPEGKGTIK 96-116
52 KVLDPEGKGTIKKHF 105-119 53 LDPEGKGTIKKHF 107-119 54 DPEGKGTIKKHF 108-119 55 PEGKGTIKKHF 109-119 56 FKVLDPEGKGTIKKH 104-118 57 KVLDPEGKGTIKKH 105-118 58 VLDPEGKGTIKKH 106-118 59 PEGKGTIKKH 109-118 60 FKVLDPEGKGTIKK 104-117 61 KVLDPEGKGTIKK 105-117 62 VLDPEGKGTIKK 106-117 63 PEGKGTIKK 109-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 87-116 65 LKGADPEDVITGAFKVLDPEGKGTIK 91-116 66 ADPEDVITGAFKVLDPEGKGTIK 94-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 67 PEDVITGAFKVLDPEGKGTIK 96-116
53 LDPEGKGTIKKHF 107-119 54 DPEGKGTIKKHF 108-119 55 PEGKGTIKKHF 109-119 56 FKVLDPEGKGTIKKH 104-118 57 KVLDPEGKGTIKKH 105-118 58 VLDPEGKGTIKKH 106-118 59 PEGKGTIKKH 109-118 60 FKVLDPEGKGTIKK 104-117 61 KVLDPEGKGTIKK 105-117 62 VLDPEGKGTIKK 106-117 63 PEGKGTIKK 106-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 87-116 65 LKGADPEDVITGAFKVLDPEGKGTIK 91-116 66 ADPEDVITGAFKVLDPEGKGTIK 94-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 67 PEDVITGAFKVLDPEGKGTIK 96-116
54 DPEGRGTIKKHF 108-119 55 PEGKGTIKKHF 109-119 56 FKVLDPEGKGTIKKH 104-118 57 KVLDPEGKGTIKKH 105-118 58 VLDPEGKGTIKKH 106-118 59 PEGKGTIKK 109-118 60 FKVLDPEGKGTIKK 104-117 61 KVLDPEGKGTIKK 104-117 62 VLDPEGKGTIKK 105-117 63 PEGKGTIKK 106-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 87-116 65 LKGADPEDVITGAFKVLDPEGKGTIK 91-116 66 ADPEDVITGAFKVLDPEGKGTIK 94-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 68 KULDPEGKGTIK 106-116
55 FKVLDPEGKGTIKKHF 109-119 56 FKVLDPEGKGTIKKH 104-118 57 KVLDPEGKGTIKKH 105-118 58 VLDPEGKGTIKKH 106-118 59 PEGKGTIKKH 109-118 60 FKVLDPEGKGTIKK 104-117 61 KVLDPEGKGTIKK 104-117 62 VLDPEGKGTIKK 105-117 63 PEGKGTIKK 106-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 87-116 65 LKGADPEDVITGAFKVLDPEGKGTIK 91-116 66 ADPEDVITGAFKVLDPEGKGTIK 94-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 68 KVLDPEGKGTIK 106-116
57 KVLDPEGKGTIKKH 105-118 58 VLDPEGKGTIKKH 106-118 59 PEGKGTIKKH 109-118 60 FKVLDPEGKGTIKK 104-117 61 KVLDPEGKGTIKK 104-117 62 VLDPEGKGTIKK 105-117 63 PEGKGTIKK 106-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 87-116 65 LKGADPEDVITGAFKVLDPEGKGTIK 91-116 66 ADPEDVITGAFKVLDPEGKGTIK 94-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 68 KVLDPEGKGTIK 105-116
58 VLDPEGKGTIKKH 106-118 59 PEGKGTIKKH 109-118 60 FKVLDPEGKGTIKK 104-117 61 KVLDPEGKGTIKK 105-117 62 VLDPEGKGTIKK 106-118 63 PEGKGTIKK 106-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 87-116 65 LKGADPEDVITGAFKVLDPEGKGTIK 91-116 66 ADPEDVITGAFKVLDPEGKGTIK 94-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 68 KULDPEGKGTIK 105-116
59 PEGKGTIKKH 109-118 60 FKVLDPEGKGTIKK 104-117 61 KVLDPEGKGTIKK 105-117 62 VLDPEGKGTIKK 106-117 63 PEGKGTIKK 106-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 87-116 65 LKGADPEDVITGAFKVLDPEGKGTIK 91-116 66 ADPEDVITGAFKVLDPEGKGTIK 94-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 68 KULDPEGKGTIK 105-116
60 FKVLDPEGKGTIKK 104-117 61 KVLDPEGKGTIKK 105-117 62 VLDPEGKGTIKK 106-117 63 PEGKGTIKK 109-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 87-116 65 LKGADPEDVITGAFKVLDPEGKGTIK 91-116 66 ADPEDVITGAFKVLDPEGKGTIK 94-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 68 KULDPEGKGTIK 105-116
61 KVLDPEGKGTIKK 105-117 62 VLDPEGKGTIKK 106-117 63 PEGKGTIKK 109-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 87-116 65 LKGADPEDVITGAFKVLDPEGKGTIK 91-116 66 ADPEDVITGAFKVLDPEGKGTIK 94-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 68 KULDPEGKGTIK 105-116
62 VLDPEGKGTIKK 106-117 63 PEGKGTIKK 109-117 64 FGEKLKGADPEDVITGAFKVLDPEGKGTIK 87-116 65 LKGADPEDVITGAFKVLDPEGKGTIK 91-116 66 ADPEDVITGAFKVLDPEGKGTIK 94-116 67 PEDVITGAFKVLDPEGKGTIK 96-116 68 KULDPEGKGTIK 106-116
63PEGRGTIKK109-11764FGEKLKGADPEDVITGAFKVLDPEGKGTIK87-11665LKGADPEDVITGAFKVLDPEGKGTIK91-11666ADPEDVITGAFKVLDPEGKGTIK94-11667PEDVITGAFKVLDPEGKGTIK96-11668KULDPEGKGTIK105-116
64FGERLKGADPEDVIIGAFKVLDPEGKGTIK87-11065LKGADPEDVIIGAFKVLDPEGKGTIK91-11666ADPEDVIIGAFKVLDPEGKGTIK94-11667PEDVIIGAFKVLDPEGKGTIK96-11668KVLDPEGKGTIK106-116
66ADPEDVITGAFKVLDPEGKGTIK94-11667PEDVITGAFKVLDPEGKGTIK96-11668KVLDPEGKGTIK105-116
67 PEDVITGAFKVLDPEGKGTIK 96-116
69 KULDDEGKGETK 105 116
08 KVLDPEGKGIIK 103-110
69 PEGKGTIK 109-116
70 KGADPEDVITGAFKVLDPEGKGT 92-114
71 KVLDPEGKG 105-113
72 VLDPEGKG 106-113
73 FGEKLKGADPEDVITGAFKVLD 87-108
74 ERGADPEDVITGAFK 94-105
76 GEKLKGADPEDVITGA 88-103
77 EKLKGADPEDVITGA 89-103
78 LKGADPEDVITGA 91-103
79 KGADPEDVITGA 92-103
80 GEKLKGADPEDVITG 88-102
81 EKLKGADPEDVITG 89-102 82 GENERACEDEDUITE 60.101
82 GEKLKGADPEDVIT 88-101 83 ₽КГКСАБДРЕДУТТ 90.101
05 EKENGADFEDVII 07 101
85 FGEKLKGADPEDVI 87-100
86 FGEKLKGAD 87-95
85 GEKLKGAD 88-95
86 EKLKGAD 89-95

enzymes able to release different dipeptides from the N-terminal site of peptides. The stability of dipeptidyl peptidases during the processing of Spanish dry-cured ham has been previously studied.²⁵ According to these authors, DPP I and DPP III kept

their activity until the end of the process, whereas DPP II activity was almost negligible at 240 days. The activity of DPP IV decreased to very low values at 240 days, although its activity remained until the end of the process. Considering the stability of dipeptidyl peptidases along the processing of dry-cured ham and its mode of action, these exopeptidases could be responsible for the consecutive loss of dipeptides observed in the N-terminal side of peptides 12, 71, 92, 115, and 129 of MLC 1 (Tables 1–3) and peptides 9, 34, 41, 52, 66, and 77 of MLC 2 (Tables 4 and 5). DPP I preferentially hydrolyzes N-terminal peptides with a penultimate basic residue.²⁶ Thus, this enzyme could be responsible for the loss of EK dipeptide from peptide 77 in MLC 2 protein. The action of DPP I in peptides 12, 71, and 92 of MLC 1 seems unlikely because this enzyme does not hydrolyze peptides containing a proline residue on the scissile bond. However, due to DPP II enzyme from porcine skeletal muscle preferentially hydrolyzing the synthetic substrates of type X-Pro,²⁷ this enzyme could be responsible for the loss of the dipeptide Ala-Pro from peptides 12 and 92 of MLC 1. It seems unlikely that DPP III has been involved in the generation of any of the fragments identified in this study because no activity of the enzyme was detected against peptide sequences containing >10 amino acids.²⁸ Finally, DPP IV activity is controversial. Some authors established that this enzyme is active against those peptides containing a proline residue in the N-penultimate position and, to a lower degree, against those containing alanine in this position.²⁹ However, other authors disagree, observing an inhibition of DPP IV with a number of nonsubstrate oligopeptides containing an N-terminal X-X-Pro- structure.³⁰

A remarkable increase in free amino acid concentration has been reported during dry-cured ham processing.^{31–33} This accumulation of free amino acids, which is relevant for the development of the characteristic dry-cured flavor, has been attributed to muscle aminopeptidases, responsible for the release of amino acids from the N-terminus of peptides and proteins. Aminopeptidase activity has been detected in meat products even after >8 months of processing, suggesting that these enzymes are involved in the later stages of protein degradation. Many factors, such as curing agent or the presence of other peptides, can modulate the activity of these enzymes.^{34,35}

Áccording to Toldrá et al.,³³ alanyl and arginyl aminopeptidases, which show good stability during dry-cured processing and act at optimal neutral pH, appear to be the main contributors to the generation of free amino acids during the processing of dry-cured ham. Alanyl aminopeptidase (AAP, EC 3.4.11.14) is considered to be the major aminopeptidase in skeletal muscle with a broad range of specificity. This enzyme hydrolyzes unblocked N-terminal Ala residues as well as Leu, Arg, Phe, Tyr, and Met. However, peptides containing Pro in the N-terminal or subterminal position (P1 or P1') seem to be totally resistant to hydrolysis by alanyl aminopeptidase,³⁶ although Flores et al.³⁷ detected a residual activity of this enzyme when acting on a Pro-AMC substrate. Thus, although this enzyme could be responsible for the loss of Ala in peptides 4, 5, 14, 15, 23, 24, 32, 33, 44, 45, 56, 57, 65-67, 78, 79, 86, 87, and 99 from MLC 1, it seems unlikely that this enzyme was responsible for the consecutive loss of Ala and Pro shown in the N-terminal side of subsequent peptides contained in Table 1. This aminopeptidase could also be responsible for the loss of Arg in peptide 128 from MLC 1 and the loss of Phe in peptides 51, 56, 60 and 86, and Leu in peptides 53 and 78 from MLC 2.

The activity of arginyl aminopeptidase (RAP, EC 3.4.11.6) is more restricted to a few terminal amino acids mainly of basic nature (Arg, Lys, and His), although according to Flores et al.,³⁸ Pro-MCA and Ala-MCA derivatives were also cleaved by the enzyme. Thus, RAP could be responsible for the loss of Lys observed in peptides 57, 61, and 71 as well as for the consecutive loss of Ala and Pro shown in the N-terminal side of peptides contained in Table 1. Similar to AAP, RAP enzyme could be also responsible for the loss of Arg in peptide 128 from MLC 1. Methionyl aminopeptidase (MAP, EC 3.4.11.18) might have a similar role as AAP, although at a lower activity.

Other aminopeptidases existing in skeletal muscle are leucyl aminopeptidase (LAP, EC 3.4.11.1) and pyroglutamyl aminopeptidase (PGAP, EC 3.4.19.3). These enzymes could also contribute to the loss of amino acids in peptides identified in this study, although the activity of these enzymes during drycuring is lower than AAP and RAP due to the effect of pH and ripening agents.

Carboxypeptidases constitute another group of exopeptidases responsible for the hydrolysis of amino acids from the C-terminal site of peptides. Only tissue and lysosomal carboxypeptidase A have been previously studied in skeletal muscle. The effect of curing agents on the activity of these enzymes, together with their stability during the ripening period, has not been studied yet. Both carboxypeptidases are most active on hydrophobic C-terminal residues, with Phe and Leu as most preferred substrates. They could be responsible for the loss of Phe in peptides 50-55 from MLC 2 and of Leu in peptides 31-41 from MLC 1 and in peptides 33–36 and 49 from MLC 2, as well as for the loss of hydrophobic Ile (peptides 14-19 and 56-62 from MLC 1), Ala (peptides 20-22 from MLC 1 and peptides 76-79 from MLC 2), and Val (peptide 121 from MLC 1). Tissue carboxypeptidase A is not able to hydrolyze Pro, but it can hydrolyze Thr at neutral pH (peptides 1, 2, 70, and 82–84 from MLC 2).

In the present work, a total of 137 MLC 1 protein fragments and 88 peptides from MLC 2 have been identified, proving the intense proteolysis suffered by these proteins during dry-cured ham processing. The obtained results suggest the contribution of dipeptidyl peptidases, together with aminopeptidases and carboxypeptidases, to the generation of dipeptides and free amino acids during the dry-cured ham processing. These generated compounds can contribute, together with other nonvolatile and volatile compounds, to the development of the characteristic flavor of dry-cured ham.

ASSOCIATED CONTENT

Supporting Information. Tables A and B. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Phone: (+34) 390 00 22. Fax: (+34) 363 63 01. E-mail: ftoldra@iata.csic.es.

Funding Sources

Project AGL2010-16305 from MICINN (Spain) and FEDER funds are acknowledged.

REFERENCES

(1) Pearson, A. M.; Young, R. B. Proteins of the Thick Filament, 1st ed.; Academic Press: London, U.K., 2008; Vol. 3.

(2) Toldrá, F.; Rico, E.; Flores, J. Cathepsin B, D, H and L activities in the processing of dry-cured ham. *J. Sci. Food Agric.* **1993**, *62* (2), 157–161.

(3) Di Luccia, A.; Picariello, G.; Cacace, G.; Scaloni, A.; Faccia, M.; Liuzzi, V.; Alviti, G.; Musso, S. S. Proteomic analysis of water soluble and myofibrillar protein changes occurring in dry-cured hams. *Meat Sci.* **2005**, *69* (3), 479–491. (4) Sentandreu, M. A.; Armenteros, M.; Calvete, J. J.; Ouali, A.; Aristoy, M. C.; Toldrá, F. Proteomic identification of actin-derived oligopeptides in dry-cured ham. *J. Agric. Food Chem.* **2007**, *55* (9), 3613–3619.

(5) Mora, L.; Sentandreu, M. A.; Koistinen, K. M.; Fraser, P. D.; Toldrá, F.; Bramley, P. M. Naturally generated small peptides derived from myofibrillar proteins in Serrano dry-cured ham. *J. Agric. Food Chem.* **2009**, *57* (8), 3228–3234.

(6) Mora, L.; Sentandreu, M. A.; Fraser, P. D.; Toldrá, F.; Bramley, P. M. Oligopeptides arising from the degradation of creatine kinase in Spanish dry-cured ham. J. Agric. Food Chem. 2009, 57 (19), 8982–8988.

(7) Sforza, S.; Boni, M.; Ruozi, R.; Virgili, R.; Marchelli, R. Identification and significance of the N-terminal part of swine pyruvate kinase in aged Parma hams. *Meat Sci.* **2003**, *63* (1), 57–61.

(8) Mora, L.; Sentandreu, M. A.; Toldrá, F. Identification of small troponin T peptides generated in dry-cured ham. *Food Chem.* **2010**, *123* (3), 691–697.

(9) Toldrá, F.; Flores, M.; Sanz, Y. Dry-cured ham flavour: enzymatic generation and process influence. *Food Chem.* **1997**, *59* (4), *523–530*.

(10) Rico, E.; Toldrá, F.; Flores, J. Assay of cathepsin-D activity in fresh pork muscle and dry-cured ham. *Meat Sci.* **1991**, *29* (4), 287–293.

(11) Hirao, T.; Hara, K.; Takahashi, K. Purification and characterization of cathepsin-B from monkey skeletal-muscle. *J. Biochem.* **1984**, 95 (3), 871–879.

(12) Etherington, D. J. Conditioning of meat: factors influencing protease activity. In *Accelerated Processing of Meat*, 1st ed.; Romita, A., Valin, C., Taylor, A. A., Eds.; Elsevier: Amsterdam, The Netherlands, 1987; pp 21–28.

(13) Okitani, A.; Matsukura, U.; Kato, H.; Fujimaki, M. Purification and some properties of a myofibrillar protein-degrading protease, cathepsin-L, from rabbit skeletal-muscle. *J. Biochem.* **1980**, *87* (4), 1133–1143.

(14) Rico, E.; Toldrá, F.; Flores, J. Activity of cathepsin-D as affected by chemical and physical dry-curing parameters. *Z. Lebensm.-Unters. Forsch.* **1990**, *191* (1), 20–23.

(15) Robbins, F. M.; Walker, J. E.; Cohen, S. H.; Chatterjee, S. Action of proteolytic-enzymes on bovine myofibrils. *J. Food Sci.* **1979**, 44 (6), 1672.

(16) Zeece, M. G.; Katoh, K.; Robson, R. M.; Parrish, F. C. Effect of cathepsin-D on bovine myofibrils under different conditions of pH and temperature. *J. Food Sci.* **1986**, *51* (3), 769.

(17) Goll, D. E.; Thompson, V. F.; Taylor, R. G.; Christiansen, J. A. Role of the calpain system in muscle growth. *Biochimie* **1992**, *74* (3), 225–237.

(18) Lametsch, R.; Roepstorff, P.; Moller, H. S.; Bendixen, E. Identification of myofibrillar substrates for μ -calpain. *Meat Sci.* **2004**, 68 (4), 515–521.

(19) Sentandreu, M. A.; Coulis, G.; Ouali, A. Role of muscle endopeptidases and their inhibitors in meat tenderness. *Trends Food Sci. Technol.* **2002**, *13* (12), 400–421.

(20) Kemp, C. M.; King, D. A.; Shackelford, S. D.; Wheeler, T. L.; Koohmaraie, M. The caspase proteolytic system in callipyge and normal lambs in longissimus, semimembranosus, and infraspinatus muscles during postmortem storage. *J. Anim. Sci.* **2009**, *87* (9), 2943–2951.

(21) Ouali, A.; Herrera-Méndez, C. H.; Coulis, G.; Becila, S.; Boudjellal, A.; Aubry, L.; Sentandreu, M. A. Revisiting the conversion of muscle into meat and the underlying mechanisms. *Meat Sci.* **2006**, *74* (1), 44–58.

(22) Huang, M.; Huang, F.; Xu, X. L.; Zhou, G. H. Influence of caspase3 selective inhibitor on proteolysis of chicken skeletal muscle proteins during post mortem aging. *Food Chem.* **2009**, *115* (1), 181–186.

(23) Kemp, C. M.; Parr, T. The effect of recombinant caspase 3 on myofibrillar proteins in porcine skeletal muscle. *Animal* **2008**, *2* (8), 1254–1264.

(24) Houbak, M. B.; Ertbjerg, P.; Therkildsen, M. In vitro study to evaluate the degradation of bovine muscle proteins post-mortem by proteasome and mu-calpain. *Meat Sci.* **2008**, 79 (1), 77–85.

(25) Sentandreu, M. A.; Toldrá, F. Dipeptidyl peptidase activities along the processing of Serrano dry-cured ham. *Eur. Food Res. Technol.* **2001**, *213* (2), 83–87.

(26) Sentandreu, M. A.; Toldrá, F. Purification and biochemical properties of dipeptidyl peptidase I from porcine skeletal muscle. *J. Agric. Food Chem.* **2000**, *48*, 5014–5022.

(27) Sentandreu, M. A.; Toldrá, F. Partial purification and characterisation of dipeptidyl peptidase II from porcine skeletal muscle. *Meat Sci.* **2001**, 57 (1), 93–103.

(28) Smyth, M.; O'Cuinn, G. Dipeptidyl aminopeptidase III of guineapig brain: specificity for short oligopeptide sequences. *J. Neurochem.* **1994**, 63 (4), 1439–1445.

(29) Sentandreu, M. A.; Toldrá, F. Dipeptidyl peptidase IV from porcine skeletal muscle: purification and biochemical properties. *Food Chem.* **2001**, 75 (2), 159–168.

(30) Hoffmann, T.; Reinhold, D.; Kahne, T.; Faust, J.; Neubert, K.; Frank, R.; Ansorge, S. Inhibition of dipeptidyl-peptidase-Iv (Dp-Iv) by anti-Dp-Iv antibodies and nonsubstrate X-X-Pro- oligopeptides ascertained by capillary electrophoresis. *J. Chromatogr., A* **1995**, 716 (1–2), 355–362.

(31) Rodríguez-Núñez, E.; Aristoy, M. C.; Toldrá, F. Peptide generation in the processing of dry-cured ham. *Food Chem.* **1995**, *53* (2), 187–190.

(32) Sentandreu, M. A.; Stoeva, S.; Aristoy, M. C.; Laib, K.; Voelter, W.; Toldrá, F. Identification of small peptides generated in Spanish drycured ham. *J. Food Sci.* **2003**, *68* (1), 64–69.

(33) Toldrá, F.; Aristoy, M. C.; Flores, M. Contribution of muscle aminopeptidases to flavor development in dry-cured ham. *Food Res. Int.* **2000**, 33 (3–4), 181–185.

(34) Gianelli, P.; Flores, M.; Moya, V. J.; Aristoy, M. C.; Toldrá, F. Effect of carnosine, anserine and other endogenous skeletal peptides on the activity of porcine muscle alanyl and arginyl aminopeptidases. *J. Food Biochem.* **2000**, *24* (1), 69–78.

(35) Toldrá, F.; Cerveró, M. C.; Part, C. Porcine aminopeptidase activity as affected by curing agents. J. Food Sci. 1993, 58 (4), 724.

(36) Dando, P. M.; Barrett, A. J. Aminopeptidase PS. In *Handbook of Proteolytic Enzymes*, 2nd ed.; Barrett, A. J., Rawlings, N. D., Woessner, J. F., Eds.; Elsevier Academic Press: San Diego, CA, 2004; pp 313–316.

(37) Flores, M.; Aristoy, M. C.; Toldrá, F. HPLC purification and characterization of soluble alanyl aminopeptidase from porcine skeletal muscle. *J. Agric. Food Chem.* **1996**, *44* (9), 2578–2583.

(38) Flores, M.; Aristoy, M. C.; Toldrá, F. HPLC purification and characterization of porcine muscle aminopeptidase-B. *Biochimie* **1993**, 75 (10), 861–867.